

Format Preserving Encryption Enhancement to PyCryptodome*

Enabling FPE for the masses via popular cryptographic library

Joshua Holt

Georgia Institute of Technology, jholt@gatech.edu

Capstone Project

Format Preserving Encryption (FPE) is a method of encryption which encrypts a plaintext into a ciphertext while preserving the format

of the plaintext. For example, if the plaintext is a social security number, the resulting ciphertext will also be a nine-digit decimal number.

This preservation can apply to credit card numbers, postal addresses, networking payloads (including IP addresses), names of people and

places, and can be used to provide encryption and stateless tokenization of sensitive data.

While FPE has been widely discussed in many academic papers, and the subject of several patent claims, it has not yet been integrated

into popular cryptographic libraries. This paper outlines our implementation of FF3-1, recommended by NIST 800-38G into

PyCryptodome, a widely used cryptographic library in the Python ecosystem.

CCS CONCEPTS • Security and privacy • Cryptography • Symmetric cryptography and hash functions • Block and stream ciphers

1 INTRODUCTION

Strong encryption schemes can guarantee confidentiality, and when used appropriately, can effectively prevent

disclosure and compromise of sensitive information. However, block ciphers, which provide the backbone of symmetric

cryptography, are not always the best tools to utilize when either the length or the format of the data needs to be preserved.

Format-preserving encryption, as the name implies, maintains both the format and length of the original plaintext. FPE

is useful for preserving the confidentiality of personally identifiable information, including social security numbers, driver

licenses, U.S. passport numbers, IP addresses, names, street addresses and email addresses, as well as sensitive financial

information such as credit card and bank account numbers. It is ideal for legacy applications and databases which may be

infeasible or costly to retrofit with modern cryptographic support. FPE can act as a stateless tokenization solution to limit

or eliminate compliance requirements for merchants and service providers under the Payment Council Industry Data

Security Standard [18, 19], and can provide pseudonymization while maintaining the structure of a data type [16].

The author provides the following contributions: 1) a reference implementation of the FF3-1 format-preserving

encryption mode of operation, as outlined in NIST 800-38G [1], 2) integration with the popular PyCryptodome

cryptographic library, 3) validation with the NIST Automated Cryptographic Validation Program test vectors [21], 4)

documentation providing API operation, use cases, and best practices and 4) release under the BSD-2 clause license [31],

allowing “free-as-in-speech" usage rights.

While other implementations of format-preserving encryption (including FF3-1) exist, to date the mode of operation

has not been integrated with any major open-source cryptographic library. The author has chosen to enhance

mailto:jholt@gatech.edu

2

PyCryptodome, a fork of the PyCrypto library, with the goal of providing a simplified API, quality documentation, and

working examples. Code examples and documentation are “the stronger predictors of production working code”, while

“simplified APIs...promote better security results” [17]. By providing a reference implementation as part of a trusted

cryptographic library with mechanisms for key management, random number generation, and other cryptographic features,

developers can avoid rolling their own cryptographic solutions or evaluating standalone implementations. Finally, the

implementation serves as a reference for developers and aspiring cryptographers, as it closely follows the NIST

specification.

This paper is organized as follows: Section 2 provides background information on format-preserving encryption

including industry and open-source implementations. Section 3 details the FF3-1 algorithm and implementation within

PyCryptodome, while Section 4 compares the performance of the implementation. The threat model for format-preserving

encryption and FF3-1 is considered in Section 5, with use cases and recommendations for FPE summarized in Section 6.

The complete implementation and documentation are provided as an appendix.

2 BACKGROUND OF FORMAT PRESERVING ENCRYPTION

2.1 ACADEMIC BACKGROUND AND RELATED WORK

The concept of a tweakable block cipher was first proposed by Liskov et al. [13]. As block ciphers are “inherently

deterministic every encryption of a given message with a given key will be the same” [13]. The authors proposed a second

input, known as the “tweak.” The goal was to distinguish the function of the tweak, which provides variability, from that

of the key, which provides uncertainty, and is designed in such a way that modifying the tweak is “less costly than changing

the key” [13]. The first formal treatment of format-preserving encryption was provided in [2], providing FPE constructions,

syntax, and security notions.

The FFX mode of operation for FPE was specified in [4], which uses Feistel-based encryption with multiple sets of

parameters including tweak values. A Feistel construction is a “natural approach for solving the small-space FPE problem”

as it is “simple, old, and extensively studied” [3]. FFX “can encipher strings of any length over any desired alphabet”

depending on the parameter set used; parameter set A2 encrypts binary strings, while A10 allows for encryption of decimal

strings [3]. FFX[radix] is introduced in [5] which “effectively unifies and extends FFX-A2 and FFX-A10" allowing for

arbitrary message lengths and a constant number of Feistel rounds.

The BPS format-preserving encryption proposal was outlined in [6], capable of encrypting “short or long strings

composed of characters from any set” along with a tweak capability and the ability to “use any standardized primitives

such as TDES, AES, or SHA-2.” The authors outline two contributions. The first is the introduction of the internal block

cipher BPS-BC (along with the inverse BC-1) based on a Feistel structure that can encrypt and decrypt values of limited

length. The number of Feistel rounds is fixed at 8, and the tweak is also a fixed length (64 bytes). The second contribution

is the BPS mode of operation combining the BC cipher in a manner “similar to the classical Cipher-Block Chaining mode”

to allow format-preserving encryption of inputs up to 8MB in size.

The NIST Special Publication 800-38G published in 2016 provided “approved methods of format-preserving

encryption” along with algorithms, parameter choices and security goals [27]. The FFX[radix] parameter set and the BPS-

BC mode of operation was submitted to NIST and adopted as FF1 and FF3, respectively. A second mode of operation

(FF2) was submitted but not approved due to security weaknesses. The NIST publication provided example values for

implementations of the provided algorithms [20] with the intention of allowing “conformance testing for

implementations...within the framework of the Cryptographic Algorithm Validation Program (CAVP)” [22]. A draft

3

revision of 800-38G, released in 2019, increased the minimum domain size and modified the tweak structure for FF3 due

to published cryptographic vulnerabilities [1]. A fourth mode of operation (FF4), also known as DFF (“delegatable FF”)

has recently been submitted to NIST for inclusion. This mode is based on FF2 but modifies the Feistel round function to

circumvent the security weaknesses [29].

Identity-based tweakable block ciphers were introduced in [28]. The aim of this construction is to provide privacy

guarantees by using a Password-Based Key Derivation Function to ensure that even if an individual encryption key is

disclosed, it does not affect other encryptions under the same base key. The standard FF1 and FF3 schemes are not eligible,

making the potential inclusion of FF4/DFF within the NIST approved modes of operation an interesting area to watch.

The FF1 and FF3 modes of operation utilize the AES block cipher, which enjoys hardware acceleration on processors

with AES-NI instruction sets. By replacing the AES block cipher with lightweight block ciphers (LEA and SPECK),

efficiency can be improved in Internet-of-Things (IOT) devices [30].

2.2 IMPLEMENTATIONS OF FORMAT-PRESERVING ENCRYPTION

Industry implementations have the potential advantage of NIST validation and FIPS compliance but may require

substantial hardware and licensing costs. Individual implementations of FPE may not be compatible, making it difficult to

migrate or replace (vendor lock-in). Implementations may use unapproved modes of operation (FF2) and deprecated block

ciphers (3DES). Finally, the underlying algorithms and block ciphers might not be disclosed, leaving the customer unable

to validate the security properties of the solution. In all cases surveyed, the pricing of the proprietary industry

implementations is not disclosed without contacting sales, requiring potentially considerable capital and operating expense.

Table 1: Survey of industry implementations of Format-Preserving Encryption

Vendor Product Modes of Operation Cost

Hashicorp Vault Advanced Data Protection FF3-1 with AES Contact Sales

IBM Common Cryptographic Architecture FF1, FF2, FF2.1 with 3DES Contact Sales

Micro Focus Voltage SecureData FF1 with AES Contact Sales

BlueFin ShieldConex Unknown FPE algorithm Contact Sales

Several standalone open-source implementations of format-preserving encryption schemes have been released.

CapitalOne provided an original implementation in the Go programming language. Recently, Mysto has provided FPE

implementations in several programming languages.

Table 2: Survey of open-source implementations of Format-Preserving Encryption

Author Programming languages supported Algorithm License

CapitalOne Go FF1, FF3 Apache 2.0

Mysto Python, Java, C, Node FF3 Apache 2.0

Kpdyer (LibFFX) Python FF1 GNU GPL 3.0

Emulbreh (PyFFX) Python FFX-A2 MIT

Open-source implementations have not been integrated with common cryptographic frameworks (examples including

PyCryptodome, Pyca/Cryptography, LibSodium and the Go Supplementary Cryptographic Libraries). The exception is

BouncyCastle, which has released format-preserving encryption with version 1.69 but is limited to the Java ecosystem.

4

In addition, the FF1/FFX algorithm is patented by Voltage Systems [23]. While a letter of assurance for essential patent

claims was provided to NIST [24], the licensing costs make the FF1 mode of operation infeasible for inclusion in an open-

source cryptographic library. Due to the patent claims, the author did not consider FF1 a valid implementation option.

3 THE FF3-1 ALGORITHM AND IMPLEMENTATION WITHIN PYCRYPTODOME

3.1 THE FF3-1 ALGORITHM AND PRELIMINARIES

The FF3-1 (Format-preserving, Feistel-based, 3rd submission, 1st revision) is a format-preserving encryption scheme

[1]. It is a modified version of the BPS-BC cipher originally outlined in [6], and provides two functions:

• FF3-1.Encrypt(K, T, X): Takes as input key K, tweak bit string T, and numeral string X, and returns a numeral

string Y as ciphertext

• FF3-1.Decrypt(K, T, X): Takes as input key K, tweak bit string T, and ciphertext numeral string X, and returns

a numeral string Y as plaintext

Note the scheme provides “correct decryption [26]”, the output of FF3-1.Encrypt, when passed with the same key and

tweak to the input of FF3-1.Decrypt, will provide the original plaintext.

The key is formally listed as “an input to the encryption and decryption functions [1]” but is simply an AES key in

either 128, 192, or 256-bits. This key is passed to the round function operation (CIPH(), which is AES in CBC-MAC mode)

as seen below.

The tweak “serves much the same purpose that an initialization vector does for CBC mode” and provides variability to

the ciphertext [13]. The tweak is very similar to the use of a salt value for securing storage of passwords; it helps avoid

dictionary attacks and overcome the “fact that, with any deterministic encryption scheme, identical inputs do map to

identical outputs” [3]. The tweak “does not need to be secret” [1] and “keeping the tweak secret need not provide any

greater cryptographic strength” [13], it can be based in whole or in part on known information associated with the plaintext.

The input X is a numeral string and is a representation of a “set of two or more symbols called an alphabet” [1]. The

radix is the base of the alphabet to be encrypted. For example, Social Security Numbers (decimal digits) would have a

radix of 10, while the standard lowercase alphabet would have a radix of 26. Numeral strings are represented as lists of the

set of non-negative integers and are converted between integers and numeral strings as necessary in the algorithms.

Note that “numbers are represented with increasing order of significance” [1] (i.e. the little-endian format) in the

original BPS-BC specification [6]. The FF3-1 specification accounts for the little-endian format by providing utility

functions to reverse numeral strings and byte arrays, as necessary, to conform to the BPS-BC format.

The FF3-1.Encrypt and FF3-1.Decrypt algorithms as specified in NIST 800-38G are provided below [1].

ALGORITHM 1: FF3-1.Encrypt [1]

1. Let u = ⌈n/2⌉; v = n – u.
2. Let A = X[1..u]; B = X[u + 1..n]
3. Let TL = T [0..27] || 04 and TR = T [32..55] || T[28..31] || 04
4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.
ii. Let P = W ⊕ [i]4 || [NUMradix (REV(B))]12

iii. Let S = REVB(CIPHREVB(K)REVB(P))
iv. Let y = NUM(S)
v. Let c = (NUMradix(REV(A)) + y) mod radixm

5

vi. Let C = REV(STRmradix (c))
vii. Let A = B

viii. Let B = C

5. Return A || B

ALGORITHM 2: FF3-1.Decrypt [1]

1. Let u = ⌈n/2⌉; v = n – u.
2. Let A = X[1..u]; B = X[u + 1..n]
3. Let TL = T [0..27] || 04 and TR = T [32..55] || T[28..31] || 04
4. For i from 0 to 7:

i. If i is even, let m = u and W = TR, else let m = v and W = TL.
ii. Let P = W ⊕ [i]4 || [NUMradix (REV(A))]12

iii. Let S = REVB(CIPHREVB(K)REVB(P))
iv. Let y = NUM(S)
v. Let c = (NUMradix(REV(B)) - y) mod radixm

vi. Let C = REV(STRmradix (c))
vii. Let B = A

viii. Let A = C

5. Return A || B

The algorithms utilize a Feistel structure, which “consists of several iterations, called rounds, of reversible

transformations” [1].

Figure 1: Representation of FF3-1 Feistel Structure

The plaintext (X) is split into two halves (A & B). The first iteration operates on the right half, as the B substring is

XOR’d with the right half of the tweak value (split in Step 3 above). This output is fed into the CBC_MAC operation,

operating under the key K. FF3-1 makes “extensive use of modular addition [6]”, adding the results of the CBC_MAC

6

operation with the substring B. Finally, the sides are switched, with the original B becoming the new A, and the modified

A becoming the new B. FF3-1 utilizes eight Feistel rounds before returning the concatenated A and B substrings as the

ciphertext (Y). Decryption utilizes a similar process but reverses the rounds and performs modular subtraction.

Feistel structures are well suited to forming the basis of format-preserving encryption algorithms as it “always

engenders a reversible function – that is it works to make a blockcipher – no matter what you use for the round functions”

[3].

3.2 THE FF3-1 IMPLEMENTATION AND INTEGRATION

For the implementation of FF3-1, the author first implemented the original version (FF3). This is due to the sample

examples provided by NIST which provide intermediate values for both the encrypt and decrypt algorithms [20]. These

samples were not updated for the FF3-1 algorithm.

The original FF3 implementation operates on numeral strings, and it was expected that utility code would convert the

alphabet representation into the numeral string format before encrypt/decrypt operations. For base 10 numbers these can

be represented with standard Python strings (“0123456789”), but if the radix is greater than base 10 they are formatted as

a Python list: [“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “10”, “11”, “12”, “13”, “14”]. The

_encrypt_numeral_string and _decrypt_numeral_string methods are implementations of the original FF3 encrypt and

decrypt algorithms working directly with numeral strings.

For the modified FF3-1 algorithm, the NIST ACVT [21] requires the support of capabilities, and effectively

standardizes the supported characters for the alphabet. Valid alphabet characters must be between 2 and 64 characters in

length [21]. The valid alphabet characters are restricted to decimals, lower and uppercase alphabets and the “+” and “/”

characters and is synonymous to the Base64 character set (without the “=” padding character). This diverges from the

original FF3 specification which allowed radix base values of up to 65536.

The encrypt and decrypt methods are FF3-1 wrappers to the original numeral_string methods, taking a plaintext in a

string format (conforming to the alphabet), converting it to a numeral string, and converting the 56-bit tweak to a 64-bit

tweak supported by FF3. Contrary to the FF3-1 algorithm spec, these methods do not take in a key value as input, as the

key is specified in the construction of the object and cannot be changed without creating a new FF3 object. However, the

tweak can (and should) be modified on each call to encrypt/decrypt, and to increase security should be unique for each

plaintext/ciphertext pair.

The FF3-1 implementation methods are listed below. Note that per Python specification, an underscore denotes a private

method that should not be called directly by API operations. Component functions are specified in Section 4.5 of the NIST

800-38G standard [1] and this implementation’s methods closely follow the specification.

Table 3: FF3-1 Implementation Methods

Method Purpose

__init__(self, radix, alphabet, key) Initializes FF3 encryption object. Each FF3 object is limited to the same key, radix,

and alphabet

_num_radix(self, X) Takes numeral string X, returns the number that X represents in base radix when the

numerals are valued in decreasing order of significance

_num(self, X) Takes byte array X, returns an integer x valued in decreasing order of significance

(i.e. big-endian)

_str_m_radix(self, m, x) Given a non-negative integer less than radixm, returns the representation of x as a

string of m numerals in base radix, in big-endian

7

_rev(self, X) Given a numeral string X, the numeral string that consists of the numerals of X in

reverse order

_revb(self, X) Given a bytearray X the byte array that consists of the bytes of X in reverse order

_check_numeral_string(self, X) Checks the length of X and throws an error if not in range. Makes sure all elements

of X are valid integers within the radix

_convert_tweak(self, T_56) Takes a 56-bit tweak value and converts it to a 64-bit tweak value per Step 3 in

Algorithm 9: FF3-1.Encrypt(K, T, X)

_plaintext_to_numeral_string(self, pt) Takes a plaintext under a given alphabet and converts it to a numeral string. Validates

the plaintext does not contain invalid characters.

_numeral_string_to_plaintext(self, ns) Takes a plaintext under a given alphabet and converts it to a numeral string. Validates

the plaintext does not contain invalid characters.

_encrypt_numeral_string(self, X, T) Implements the FF3.Encrypt algorithm per NIST SP 800-38G. Takes a (plaintext)

numeral string in base radix of length n, such that n is between minlen and maxlen.

Takes tweak bit string T, such that len = 8 (64-bits). Returns (ciphertext) numeral

string Y such that len(Y) = n

_decrypt_numeral_string(self, X, T) Implements the FF3.Decrypt algorithm per NIST SP 800-38G. Takes a (ciphertext)

numeral string in base radix of length n, such that n is between minlen and maxlen.

Takes tweak bit string T, such that len = 8 (64-bits). Returns (plaintext) numeral

string Y such that len(Y) = n

encrypt(self, pt, T_56) Implements the FF3-1.Encrypt algorithm per NIST 800-38G rev. 1. Takes a plaintext

and a 56-bit tweak, and returns a ciphertext which is the plaintext encrypted via the

key and tweak, converted to a string

decrypt(self, ct, T_56) Implements the FF3-1.Decrypt algorithm per NIST 800-38G rev. 1. Takes a

ciphertext and a 56-bit tweak, and returns a plaintext which is the ciphertext

decrypted via the key and tweak, converted to a string

3.3 PYCRYPTODOME INTEGRATION AND DELIVERABLES

The author provides the following contributions to the PyCryptodome cryptographic library. Note that while the name

of the deliverable is FF3, this is in fact the FF3-1 implementation. Python does not allow hyphens within the naming

convention for classes or functions, and thus the original name of the algorithm was retained. To the extent possible, the

naming convention for variables followed in the FF3-1 specification [1] was retained.

Crypto/Cipher/ff3.py: Implementation of FF3-1 algorithm in PyCryptodome. It supports only the AES block cipher

(in ECB mode) with a key in sizes of 128, 192, and 256 bits. The constructor takes as input the alphabet, radix, and key.

The encrypt and decrypt methods take in a tweak and the plaintext or ciphertext (respectively) and returns the encrypted

or decrypted result. While the key is locked with the instantiation of the FF3 object, the tweak may be changed on each

subsequent encrypt and decrypt call.

The algorithm for FF3-1 calls for an approved block cipher in CBC-MAC mode. As only a single block is passed to the

algorithm, in practice this is equivalent to ECB mode, which is implemented directly in PyCryptodome (with hardware

acceleration support). Only AES is presently approved by NIST for the block cipher operation.

It should be noted that the NIST ACVP testing vectors limit the algorithm to an alphabet of 64 characters. The FF3-1

implementation is limited to sample cases which meet the NIST ACVP definitions.

Crypto/SelfTest/Cipher/test_ff3.py: Tests for the FF3-1 encrypt and decrypt functions. The tests include happy path

testing to validate correct implementation against 450 NIST ACVT sample vectors [21], out of range testing for the key,

8

radix, tweak, plaintexts and ciphertexts, valid alphabet character testing, and minimum and maximum input validation.

The happy path tests are integrated with the pycryptodome_test_vectors project and will be skipped if the module is not

installed.

PyCryptodome primarily utilizes the NIST CAVP test vectors. NIST is no longer publishing new CAVP test vectors

and is transitioning to the Automated Cryptographic Validation Protocol. As this test support was not currently integrated

within PyCryptodome, the test vectors have been added as an additional directory under

pycryptodome_test_vectors/Cipher/ACVP/FF3

Doc/src/cipher/ff3.rst: Documentation (reStructuredText format) of the FF3-1 mode of operation. Includes the full

API of the public encrypt and decrypt functions, examples, and notes for configuring the radix, alphabet, and tweak values.

Licensing: Care was taken to avoid other implementations of FF3 (and FF3-1) during the development process. Only

the BPS specification [6] and NIST 800-38G [1] were consulted in developing the implementation, which is licensed for

release under the BSD-2 clause [31].

The author has submitted the implementation as a pull request to the PyCryptodome project, where it awaits acceptance.

4 THREAT MODEL

Format-preserving encryption must provide strong cryptography. The NIST definition of strong cryptography is based

on the security strength of the algorithm, “a number associated with the amount of work (i.e., the number of operations)

that is required to break a cryptographic algorithm or system” [25]. For most symmetric cryptographic schemes and block

ciphers, the most straightforward attack is a brute-force or key exhaustion attack; simply iterate over the key space until

the correct key is found. For a block cipher with a 128-bit key space (such as AES) such an attack would require 2128

operations. NIST estimates the security strength of an algorithm “on many factors, including the attacker’s capabilities,

the key lengths, the amount of data processed using the same key, and how closely keys are related” [25]. Per the NIST

definition, the goal of FPE is to provide 128 bits of security strength, which is considered computationally infeasible

through at least 2031.

The ideal security goal of format-preserving encryption is Pseudo-Random-Permutation (PRP) security. A formal

definition of this goal is provided by Rogaway [3, 26]. An adversary with access to two oracles (one a random PRP

generator, the other the FPE scheme) should have negligible advantage in distinguishing whether the oracle is returning

the PRP or the FPE scheme [26]. Such an attack is referred to as a distinguishing attack. Distinguishing attacks against

generic Feistel structures are presented by Patarin [15]. The authors of FF3 discount Patarin’s generic attacks in [15], as

the number of queries exceed the aimed security goal and intended to leverage existing proofs of Feistel networks but noted

“finding concrete bounds is still an open problem. Solving it would be very welcome since we are potentially manipulating

very small plaintext” [6]. NIST SP 800-38G, originally published in 2016, placed domain restrictions (i.e. input

restrictions) by setting the “radix minlen ≥ 100, in order to preclude a generic meet-in-the-middle attack on the Feistel

structure” [27].

While strong PRP security is a stated goal for the FF1/FFX mode of operation [3], the authors of FF3/BPS did not

consider the threat relevant in practice “since the technique only allows to distinguish several instances from our block

cipher from a random keyed permutation family” [6]. Bellare et al. notes that while “a distinguishing attack aims to violate

(tweakable) PRP security” they “have not been considered a significant threat in practice” as they do not cause any practical

damage in applications of FPE [9].

Practical attacks against FPE schemes target message recovery. The first attacks against both FF1 and FF3 which result

in message recovery are outlined by Bellare et al [9]. The attacks primarily target small domain sizes, and for 4-bit

9

messages, the attackers fully recover the target message using 231 examples” against FF3. Left-hand recovery and right-

hand recovery attacks are combined and “when given three ciphertexts per tweak” can lead to recovery of the entire

plaintext over small domains. The attacks on small domains are improved in [8, 10, 11, 14].

Durak and Vaudenay discovered a weakness in “bad domain separation” in the FF3 implementation, that effectively

reduced the 8-round Feistel security of FF3 to 4 rounds [7]. The authors “developed a new generic known-plaintext attack

to 4-round Feistel network” and showed that FF3 did not provide the desired 128-bit security properties. The attack

manipulates a property of the tweak value in the function, where the tweak is XOR’d with the round function iterator. To

prevent an attacker from being able to manipulate this field, the authors recommend a change in the tweak schedule [7].

To account for the attacks against small domain sizes, as well as the bad domain separation in the tweak for FF3-1,

NIST issued a statement on the cryptanalysis of FF3 [12] and revised the 800-38G standard in 2019 [1]. The tweak

modifications require “reordering some of (the tweak’s) bits in a particular manner, and then forcing the bits in eight

particular bit positions to be zero” [1]. In addition, the domain size is restricted for both FF1 and FF3 such that radixminlen

≥ 1000000. The use cases in Section 6 show how the domain restrictions affect the forms of input that can be used with

FPE.

 Note that under a single key and a single tweak value, an adversary with access to an encryption oracle can easily build

a mapping of all plaintexts to all ciphertexts. For example, Social Security Numbers only have a billion possibilities, and

by querying all known SSNs the adversary can then decrypt any ciphertext offline without access to the oracle. The authors

of FF3-1 highly recommend a tweak value to protect against these dictionary attacks [6]. “Information that is available and

statically associated with a plaintext” should be used “as a tweak for the plaintext” [1]. Under ideal scenarios, the tweak

should be unique for each plaintext [1].

Finally, as Format-Preserving Encryption is a deterministic scheme, without the use of a tweak it cannot be considered

IND-CPA (Indistinguishable vs. Chosen Plaintext Attack) [26]. As FPE does not include a message authentication code

the scheme provides confidentiality only and cannot provide integrity of the ciphertext (INT-CTXT).

5 PERFORMANCE

To measure the performance of the implementation, the Python modules cProfile and timeit were used. The

cProfile results include the number of calls, the total time spent in the given function, the time spent per call of a function,

and the cumulative time spent in the function including subfunctions. The filename for each function is included, along

with the line of the call. The cProfile results show that the utility functions add minimal overhead to the overall

implementation.

Table 4: cProfile Results

ncalls totime percal cumtime Filename:lineno(function)

1 0.000 0.000 0.001 <string>:1(<module>)

8 0.000 0.000 0.000 FF3.py:103(_str_m_radix)

16 0.000 0.000 0.000 FF3.py:119(_rev)

24 0.000 0.000 0.000 FF3.py:129(_revb)

1 0.000 0.000 0.000 FF3.py:156(_convert_tweak)

1 0.000 0.000 0.000 FF3.py:183(_plaintext_to_numeral_string)

1 0.000 0.000 0.000 FF3.py:201(_numeral_string_to_plaintext

1 0.000 0.000 0.001 FF3.py:216(_encrypt_numeral_string

1 0.000 0.000 0.001 FF3.py:312(encrypt)

16 0.000 0.000 0.000 FF3.py:78(_num_radix)

10

8 0.000 0.000 0.000 FF3.py:92(_num)

The performance of the implementation was compared with the open-source implementation Mysto-FF3, which was

written in Python and relies on (but does not provide integration with) PyCryptodome. 100,000 encryption operations

were made with both implementations and the execution speed was timed with the timeit module. The Mysto

implementation is approximately 10% faster than the author’s implementation. However, note that our implementation

allows modifying the tweak value on each call to the encrypt and decrypt functions. When the test is performed when

modifying the tweak on each call, the run-time of the two implementations is almost identical. The performance results

show that our implementation performs well and can be used with real-world applications.

Figure 2: Performance results of 100,000 encrypt operations

6 USE CASES FOR FORMAT-PRESERVING ENCRYPTION

Use cases for format-preserving encryption include social security numbers, driver licenses, U.S. passport numbers, IP

addresses, names, street addresses and email addresses, credit card and bank account numbers. Note that driver’s licenses,

U.S. Passport numbers and taxpayer EINs are simply variations of the social security number use case. IP addresses will

first require conversion from dotted decimal format to a standard integer. Certain IP addresses in the 0.0.0.0/8 block cannot

be encrypted with FF3-1, but as this range is reserved it does not affect usability. Names and addresses have some usability

restrictions, as the alphabet contains no native support for spaces, and shorter inputs either require padding or cannot be

encrypted. The implementation does not handle conversions from typical format; any system utilizing our implementation

is responsible for providing input in the appropriate format based on the alphabet of the FF3 object.

Table 1: FF3-1 Encryption Use Case Examples

Type Typical Format FF3-1 Encrypt Input Secure?

11

Full Primary

Account

Number (PAN)

4111 1111 1111

1111

Alphabet: “0123456789”

encrypt(4111111111111111, tweak)

Yes

Masked

PAN (Standard)

**** ** 11 1111

Alphabet: “0123456789”

encrypt(111111, tweak)

Yes

Masked

PAN (8 Digit

BIN)

**** **** 1111

Alphabet: “0123456789”

encrypt(111111, tweak)

Throws ValueError

No

Full Social

Security

Number

123-45-6789 Alphabet: “0123456789”

encrypt(123456789, tweak)

Yes

Partial

Social Security

Number

123-45-**** Alphabet: “0123456789”

encrypt(12345, tweak)

Throws ValueError

No

Name Joshua Alphabet:

“abcefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ”

encrypt(“Joshua”, tweak)

Yes

Name Holt Alphabet:

“abcefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ”

encrypt(“Holt”, tweak)

Throws ValueError

No

IP Address

(v4)

192.168.0.1 Alphabet: “0123456789”

encrypt(“3232235521”, tweak)

Yes

Bank

Account

Number

1234567891 Alphabet: “0123456789”

encrypt(1234567891, tweak)

Yes

Routing

Number

021000021 Alphabet: “0123456789”

encrypt(“021000021”, tweak)

Yes

FF3-1 can help in pseudonymisation, “the processing of personal data in such a manner that the personal data can no

longer be attributed to a specific data subject without the use of additional information” [16]. Care should be taken to

ensure that pseudonymized data does not include additional fields which can be used to either infer or map the original

sensitive data. Montjoye et al. show that “knowing the price of a (credit card) transaction increases the risk of

reidentification by 22%, on average” [32]. Advice on complying with various privacy regulations such as the General Data

Protection Regulation (GDPR) or California Consumer Privacy Act (CCPA) is beyond the scope of this paper.

Tweak values should be selected from information that is known and generally unique to the plaintext. This could be a

non-sensitive identifier, the unmasked portions of an input, or simply a random value if supported. The authors of BPS-

BC “suggest to apply a truncated hash function on the tweak input data” to meet the strict size limitations of the tweak

input [6].

Note that format-preserving encryption can cause issues with Data Loss Prevention (DLP) security controls, as the DLP

solution cannot differentiate between an FPE ciphertext and an unprotected plaintext. Integrity checks, such as the Luhn

checksum for credit card numbers or the mod 10 check for routing numbers, will not be successful without special

consideration.

12

7 CONCLUSION AND FUTURE WORK

Format-preserving encryption adds an additional tool to the cryptographer’s toolbox. By providing a reference

implementation of FF3-1 integrated with PyCryptodome, developers can rely on the standard API and the provided use

cases to avoid rolling their own crypto.

Future work includes closely watching the NIST 800-38G Rev. 1 draft status [1]. More changes to FF3-1 are likely

based on recent cryptanalysis, and NIST may certify additional FPE algorithms such as FF4. Additional tools, scaffolding,

and functionality can be built around the implementation, such as providing encryption-as-a-service, REST API

microservices, cloud-based implementation functions (such as AWS Lambda) and extensions to popular database engines

(such as Postgresql). Finally, if the implementation is not accepted into PyCryptodome due to inactivity with the project,

the author may elect to fork the project and continue maintenance.

8 ACKNOWLEDGMENTS

The author would like to thank Mustaque Ahamad, Karl Grindal, and Nate Lewis for their feedback and direction during

the capstone project journey.

REFERENCES

[1] Morris Dworkin. 2019. Draft NIST Special Publication 800-38G Revision 1 - Recommendation for Block Cipher Modes of Operation: Methods for

Format-Preserving Encryption. Retrieved from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38Gr1-draft.pdf

[2] Bellare, Ristenpart, Rogaway, Stegers. 2009. Format-Preserving Encryption. Retrieved from https://eprint.iacr.org/2009/251.pdf

[3] Phillip Rogaway. 2010. A Synopsis of Format-Preserving Encryption. Retrieved from https://www.cs.ucdavis.edu/~rogaway/papers/synopsis.pdf

[4] Mihir Bellare, Phillip Rogaway, Terence Spies. 2010 – The FFX Mode of Operation for Format-Preserving Encryption. Retrieved from

https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec.pdf

[5] Mihir Bellare, Phillip Rogaway, Terence Spies. 2010. Addendum to “The FFX Mode of Operation for Format-Preserving Encryption” A parameter

collection for enciphering strings of arbitrary radix and length. Retrieved from https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-

Techniques/documents/BCM/proposed-modes/ffx/ffx-spec2.pdf

[6] Eric Brier, Thomas Peyrin and Jacques Stern. 2010. BPS: a Format-Preserving Encryption Proposal. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.694.918&rep=rep1&type=pdf

[7] F. Betul Durak and Serge Vaudenay. 2017. Breaking The FF3 Format-Preserving Encryption Standard Over Small Domains. Retrieved from

https://eprint.iacr.org/2017/521.pdf

[8] Viet Tung Hoang, Stefano Tessaro, and Ni Trieu. 2018. The Curse of Small Domains: New Attacks on Format-Preserving Encryption. Retrieved from

https://eprint.iacr.org/2018/556.pdf

[9] Mihir Bellare, Viet Tung Hoang, Stefano Tessaro. 2016. Message-Recovery Attacks on Feistel-Based Format Preserving Encryption. Retrieved from

https://dl.acm.org/doi/pdf/10.1145/2976749.2978390

[10] Orr Dunkelman, Abhishek Kumar, Eran Lambooij, Somitra Kumar Sanadhya. 2020. Cryptanalysis of Feistel-Based Format-Preserving Encryption.

Retrieved from https://eprint.iacr.org/2020/1311.pdf

[11] Tim Beyne. 2021. Linear Cryptanalysis of FF3-1 and FEA. Retrieved from https://www.esat.kuleuven.be/cosic/publications/article-3384.pdf

[12] NIST. 2017. Recent Cryptanalysis of FF3. Retrieved from https://csrc.nist.gov/news/2017/recent-cryptanalysis-of-ff3

[13] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. 2002. Retrieved from

https://people.csail.mit.edu/rivest/pubs/LRW02.pdf

[14] Ohad Amon, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. 2021. Three Third Generation Attacks on the Format Preserving Encryption

Scheme FF3. Retrieved from https://eprint.iacr.org/2021/335.pdf

[15] Jacques Patarin. 2001. Generic Attacks on Feistel Schemes. Retrieved from https://eprint.iacr.org/2008/036.pdf

[16] European Union Agency for Cybersecurity. Pseudonymisation techniques and best practices - Recommendations on shaping technology according to

data protection and privacy provisions. Retrieved from https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-

practices/at_download/fullReport

[17] Acar, Backes, Fahl, Garfinkel, Kim, Mazurek, Stransky. 2017. Comparing the Usability of Cryptographic APIs. Retrieved from

https://www.cl.cam.ac.uk/~rja14/shb17/fahl.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38Gr1-draft.pdf
https://eprint.iacr.org/2009/251.pdf
https://www.cs.ucdavis.edu/~rogaway/papers/synopsis.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-spec2.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.694.918&rep=rep1&type=pdf
https://eprint.iacr.org/2017/521.pdf
https://eprint.iacr.org/2018/556.pdf
https://dl.acm.org/doi/pdf/10.1145/2976749.2978390
https://eprint.iacr.org/2020/1311.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3384.pdf
https://csrc.nist.gov/news/2017/recent-cryptanalysis-of-ff3
https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
https://eprint.iacr.org/2021/335.pdf
https://eprint.iacr.org/2008/036.pdf
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/at_download/fullReport
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/at_download/fullReport
https://www.cl.cam.ac.uk/~rja14/shb17/fahl.pdf

13

[18] PCI Security Standards Council. Tokenization Product Security Guidelines. Retrieved from

https://www.pcisecuritystandards.org/documents/Tokenization_Product_Security_Guidelines.pdf

[19] PCI Security Standards Council. Information Supplement: PCI DSS Tokenization Guidelines. Retrieved from

https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf

[20] NIST. Block Cipher Modes of Operation: FF3 Method for Format-Preserving Encryption. Retrieved from

https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/FF3samples.pdf

[21] NIST. Automated Cryptographic Validation Testing (ACVT). https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing

[22] NIST. Cryptographic Algorithm Validation Program (CAVP). https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program

[23] Matthew Pauker, Terence Spies, Luther Martin. 2006. Data processing systems with format-preserving encryption and decryption engines. (June 2006).

US Patent No. 7864952 B2, Filed Dec. 6, 2006, Issued Jan. 4, 2011.

[24] Voltage Security. REVISED LETTER OF ASSURANCE FOR ESSENTIAL PATENT CLAIMS FFX Mode of Operation for Format -Preserving

Encryption. Retrieved April 2, 2013. https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-

voltage-ip.pdf

[25] NIST. Special Publication 800-57 Part 1 Revision 5: Recommendation for Key Management:

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

[26] Bellare, Rogaway. Introduction to Modern Cryptography. 2005. Retrieved from

https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf

[27] Morris Dworkin. 2016. NIST Special Publication 800-38G - Recommendation for Block Cipher Modes of Operation: Methods for Format-Preserving

Encryption. Retrieved from https://csrc.nist.gov/publications/detail/sp/800-38g/final

[28] Bellare, Hoang. 2017. Identity-Based Format-Preserving Encryption. Retrieved from https://eprint.iacr.org/2017/877.pdf

[29] Joachim Vance, Mihir Bellare. 2014. An Extension of the FF2 FPE Scheme. Retrieved from https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-

Techniques/documents/BCM/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf

[30] Wonyoung Jang, Sun-Young Lee. 2020. A Format-preserving encryption FF1, FF3-1 Using Lightweight Block Ciphers LEA and SPECK. Retrieved

from https://dl.acm.org/doi/pdf/10.1145/3341105.3373953

[31] The 2-Clause BSD License. Retrieved from https://opensource.org/licenses/BSD-2-Clause

[32] Montjoye, Radaelli, Singh, Pentland. 2016. Unique in the shopping mall: On the reidentifiability of credit card metadata. Retrieved from

https://www.science.org/doi/10.1126/science.1256297

A APPENDICES

A.1 Industry Implementations of FPE

[1] ANSI X9.124-2-2018: Symmetric Key Cryptography for the Financial Services Industry – Format Preserving Encryption – Part 2: Key Stream with

Counter Mode. Retrieved from https://webstore.ansi.org/standards/ascx9/ansix91242018

[2] IBM Systems cryptographic HSMs. Format perserving encryption. Retrived from https://www.ibm.com/docs/en/linux-on-systems?topic=services-

format-preserving-encryption and https://www.ibm.com/security/cryptocards

[3] Hashicorp. Vault Enterprise Advanced Data Protection Module. Retrieved from https://www.hashicorp.com/products/vault/transform

[4] Micro Focus. Voltage SecureData. Retrieved from https://www.microfocus.com/media/data-sheet/voltage_securedata_ds.pdf

[5] Bluefin. ShieldConex. Retrieved from https://www.bluefin.com/products/shieldconex/

A.2 Open-Source Implementations of FPE

[1] Format-preserving implementation in Go. Retrieved from https://github.com/capitalone/fpe

[2] Mysto Format-Preserving Encryption implementations. Retrieved from https://github.com/mysto

[3] LibFFX – Python implementation of the FFX mode of operation for Format-Preserving Encryption. Retrieved from https://github.com/kpdyer/libffx

[4] PyFFX – Python implementation of Format-preserving Feistel-based encryption (FFX). Retrieved from https://github.com/emulbreh/pyffx

[5] BouncyCastle FPEEngine. Retrieved from https://www.bouncycastle.org/docs/docs1.8on/index.html

A.3 FF3-1 Python Implementation

Github Repository: https://github.com/Dregnus/pycryptodome

Pull Request: https://github.com/Legrandin/pycryptodome/pull/601

https://www.pcisecuritystandards.org/documents/Tokenization_Product_Security_Guidelines.pdf
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/FF3samples.pdf
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-voltage-ip.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-voltage-ip.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://csrc.nist.gov/publications/detail/sp/800-38g/final
https://eprint.iacr.org/2017/877.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf
https://dl.acm.org/doi/pdf/10.1145/3341105.3373953
https://opensource.org/licenses/BSD-2-Clause
https://www.science.org/doi/10.1126/science.1256297
https://webstore.ansi.org/standards/ascx9/ansix91242018
https://www.ibm.com/docs/en/linux-on-systems?topic=services-format-preserving-encryption
https://www.ibm.com/docs/en/linux-on-systems?topic=services-format-preserving-encryption
https://www.ibm.com/security/cryptocards
https://www.hashicorp.com/products/vault/transform
https://www.microfocus.com/media/data-sheet/voltage_securedata_ds.pdf
https://www.bluefin.com/products/shieldconex/
https://github.com/capitalone/fpe
https://github.com/mysto
https://github.com/kpdyer/libffx
https://github.com/emulbreh/pyffx
https://www.bouncycastle.org/docs/docs1.8on/index.html
https://github.com/Dregnus/pycryptodome
https://github.com/Legrandin/pycryptodome/pull/601

14

Source code for the FF3-1 implementation is provided below, stripped of comments and docstrings for brevity. Author

retains all rights under BSD-2 clause license.

from __future__ import absolute_import

import math

from Crypto.Cipher import AES

from Crypto.Random import get_random_bytes

class FF3:

 def __init__(self, radix, alphabet, key):

 self.radix = radix

 if (self.radix < 2) or (self.radix > 64):

 raise RadixOutOfRangeError('Radix must be between 2 and 64')

 self.alphabet = alphabet

 if (len(self.alphabet) < 2) or (len(self.alphabet) > 64):

 raise AlphabetOutOfRangeError("Alphabet range between 2 and 64")

 if not (self.alphabet.isalnum()):

 if "+/" not in self.alphabet:

 raise AlphabetValueError("Alphabets must contain numbers \

 and upper and lower case letters, '+ and '/)")

 if len(self.alphabet) != len(set(self.alphabet)):

 raise AlphabetValueError("All alphabet values must be unique")

 self.key = key

 self.ciph = AES.new(self._revb(self.key), AES.MODE_ECB)

 self.minlen = math.ceil(math.log(1000000) / math.log(radix))

 self.maxlen = 2 * math.floor(math.log(2 ** 96, radix))

 def _num_radix(self, X):

 x = 0

 for i in range(0, len(X)):

 x = x * self.radix + int(X[i])

 return x

 def _num(self, X):

 return int.from_bytes(X, "big")

 def _str_m_radix(self, m, x):

 X = []

 for i in range(0, m):

 X.insert(0, str(x % self.radix))

 x = x // self.radix

 return X

 def _rev(self, X):

 return X[::-1]

 def _revb(self, X):

15

 return X[::-1]

 def _check_numeral_string(self, X):

 if not (self.minlen <= len(X) <= self.maxlen):

 raise ValueError('Length must be between {} and {}'

 .format(self.minlen, self.maxlen))

 for i in X:

 try:

 num = int(i)

 if not (0 <= num < self.radix):

 raise ValueError('Element must be integer within base {}'

 .format(self.radix))

 except ValueError:

 raise ValueError('Element must be an integer within base {}'

 .format(self.radix))

 def _convert_tweak(self, T_56):

 if type(T_56) is not (bytes or bytearray):

 raise TypeError('Tweak must be bytes or bytearray')

 if len(T_56) != 7:

 raise ValueError('Tweak must be 7 bytes or 56 bits in length')

 t_l = int.from_bytes(T_56[0:4], 'big')

 t_l = (t_l >> 4) << 4

 t_l = t_l.to_bytes(4, 'big')

 t_r = int.from_bytes(T_56[4:], 'big')

 t_r = t_r << 8

 t_r = t_r | ((T_56[3] & 15) << 4)

 t_r = t_r.to_bytes(4, 'big')

 return t_l + t_r

 def _plaintext_to_numeral_string(self, pt):

 X = []

 for char in pt:

 try:

 X.append(self.alphabet.index(char))

 except ValueError:

 raise AlphabetValueError("Plaintext element {} not in \

 alphabet".format(char))

 return X

 def _numeral_string_to_plaintext(self, numeral_string):

 pt = []

 for number in numeral_string:

 pt.append(self.alphabet[int(number)])

 pt = ''.join(pt)

16

 return pt

 def _encrypt_numeral_string(self, X, T):

 n = len(X)

 u = math.ceil(n / 2)

 v = n - u

 A, B = X[:u], X[u:n]

 T_L, T_R = T[:4], T[4:]

 for i in range(0, 8):

 if (i % 2 == 0):

 m, w = u, T_R

 else:

 m, w = v, T_L

 w = bytearray(w)

 w[3] = w[3] ^ i

 P = w + self._num_radix(self._revb(B)).to_bytes(12,

 byteorder='big')

 S = self._revb(self.ciph.encrypt(self._revb(P)))

 y = self._num(S)

 c = (self._num_radix(self._rev(A)) + y) % (pow(self.radix, m))

 C = self._rev(self._str_m_radix(m, c))

 A = B

 B = C

 return A + B

 def _decrypt_numeral_string(self, X, T):

 n = len(X)

 u = math.ceil(n / 2)

 v = n - u

 A, B = X[:u], X[u:n]

 T_L, T_R = T[:4], T[4:]

 for i in range(7, -1, -1):

 if (i % 2 == 0):

 m, w = u, T_R

 else:

 m, w = v, T_L

 w = bytearray(w)

 w[3] = w[3] ^ i

 P = w + self._num_radix(self._revb(A)).to_bytes(12,

 byteorder='big')

 S = self._revb(self.ciph.encrypt(self._revb(P)))

 y = self._num(S)

 c = (self._num_radix(self._rev(B)) - y) % (pow(self.radix, m))

17

 C = self._rev(self._str_m_radix(m, c))

 B = A

 A = C

 return A + B

 def encrypt(self, pt, T_56):

 if not (self.minlen <= len(pt) <= self.maxlen):

 raise ValueError("Length of pt must be between \

 {} and {}".format(self.minlen, self.maxlen))

 X = self._plaintext_to_numeral_string(pt)

 T_64 = self._convert_tweak(T_56)

 Y = self._encrypt_numeral_string(X, T_64)

 return self._numeral_string_to_plaintext(Y)

 def decrypt(self, ct, T_56):

 if not (self.minlen <= len(ct) <= self.maxlen):

 raise ValueError("Length of ct must be between \

 {} and {}".format(self.minlen, self.maxlen))

 X = self._plaintext_to_numeral_string(ct)

 T_64 = self._convert_tweak(T_56)

 Y = self._decrypt_numeral_string(X, T_64)

 return self._numeral_string_to_plaintext(Y)

class RadixOutOfRangeError(ValueError):

 pass

class AlphabetOutOfRangeError(ValueError):

 pass

class AlphabetValueError(ValueError):

 pass

A.4 FF3-1 PyCryptodome Documentation

FF3 (Format Preserving Encryption) is a a method of encryption which encrypts a plaintext into a ciphertext while

preserving the format of the plaintext. PyCryptodome implements FF3-1 as outlined in NIST 800-38G NIST .

Format Preserving Encryption is useful for legacy systems and other situations where sensitive data must be protected,

but the format and the length must be retained. Common examples include Social Security Numbers (SSNs) and credit

card numbers.

FF3 uses the AES block cipher under the hood in CBC-MAC mode, and supports keys lengths of 128, 192, or 256 bits

long.

Format Preserving Encryption has a few unique properties which are required to successfully use the algorithm:

1. Alphabet: Alphabets represent the valid characters that can appear in a plaintext. For SSNs and credit cards, which

can contain only digits, the alphabet would be "0123456789". NIST ACVP defines an alphabet as a minimum of two

characters, and a maximum of 64 (all numbers and upper and lower case letters, additionally "+" and "/").

https://en.wikipedia.org/wiki/Format-preserving_encryption
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38Gr1-draft.pdf

18

2. Radix: The radix is simply the length of the alphabet, and represents the number base. For example, SSNs are decimal

digits and are in base 10.

3. Tweak: A tweak is a non-secret value that can be used to change part of the key. Tweaks are necessary in Format

Preserving Encryption because the domain of ciphertexts can be relatively low. FF3-1 tweaks must be 7 bytes in length.

Any information that is available and associated with a plaintext can be used as a tweak. It's very similar to a salt value in

that it doesn't need to be secret, but should be unique. Tweaks should be used whenever possible to limit guessing

attacks.

FF3-1 example:

>>> from Crypto.Cipher.FF3 import FF3
>>> from Crypto.Random import get_random_bytes
>>>
>>> alphabet = "0123456789"
>>> radix = len(alphabet)
>>> key = get_random_bytes(16)
>>> fpe = FF3(radix, alphabet, key)

You can encrypt a plaintext by passing the plaintext and a tweak to the encrypt() method:

>>> tweak = get_random_bytes(7)
>>> pt = "123456789"
>>> ct = fpe.encrypt(pt, tweak)
>>> print(ct)
930076983

You can decrypt a ciphertext by passing the ciphertext and a tweak to the decrypt() method:

>>> pt = fpe.decrypt(ct, tweak)
>>> print(pt)
123456789

FPE is deterministic, and the same plaintext and tweak values will provide the same ciphertext. However, modifying the

tweak value will change the associated ciphertext:

>>> ct = fpe.encrypt(pt, tweak)
>>> print(ct)
930076983
>>> tweak = get_random_bytes(7)
>>> ct = fpe.encrypt(pt, tweak)
>>> print(ct)
138680525
>>> pt = fpe.decrypt(ct, tweak)
>>> print(pt)
123456789

Note that NIST also defines FF1, which has patent claims and is not implemented by PyCryptodome.

19

	1 Introduction
	2 Background of format preserving encryption
	2.1 ACADEMIC BACKGROUND AND RELATED WORK
	2.2 IMPLEMENTATIONS OF FORMAT-PRESERVING ENCRYPTION

	3 The ff3-1 algorithm and implementation WITHIN PYCRYPTODOME
	3.1 THE FF3-1 ALGORITHM AND PRELIMINARIES
	3.2 THE FF3-1 IMPLEMENTATION AND INTEGRATION
	3.3 PYCRYPTODOME INTEGRATION AND DELIVERABLES

	4 THREAT MODEL
	5 PERFORMANCE
	6 USE CASES FOR FORMAT-PRESERVING ENCRYPTION
	7 CONCLUSION AND FUTURE WORK
	8 acknowledgments

